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Regular statistics making it possible to efficiently estimate the parameters of arbitrary distribution for the case
of a repetitive experiment is described and substantiated. The methodology of engineering mathematics is used
for derivation and substantiation of the statistics.
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Introduction. A major portion of works of mathematical and applied statistics is devoted to estimation of dis-
tribution parameters and to the consideration of related problems. To date, the only theoretical distribution for which
the problem of estimation of the shift and scale parameters is solved in an optimum manner, has been the distribution
by the normal law. We propose regular statistics making it possible to efficiently estimate any parameters of the model
of distribution of an arbitrary form. The distribution can be of any kind: theoretical or empirical, with a finite or in-
finite definition domain, with no variance, continuous or discrete. It is necessary that the distribution be described by
a single-valued nonnegative function and be normalized on the probability principle.

Formulation of the Problem and Basic Result. Let point estimation of the parameter b of distribution pre-
scribed by the probability density p(x, b) and determined on the set or space X: x, b � X, be made.

The data �d�n refer to the same experiment: �d � �d�n⏐b = const. The data are independent in the sense that
the result of estimation should not change because of their interchange in the data set. This condition is necessary for
the arithmetic operations used for data processing to correspond to the properties of data, namely, to ensure their com-
mutative and associative properties. The methods of ensuring this condition require a separate discussion.

The statistics for point estimation of the parameter in the form of a compact formula is as follows:
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Despite a certain cumbersomeness, the statistics can be represented by a simple computational algorithms each
operation of which is easily substantiated. In fact, the proposed statistics has been obtained by successive application
of engineering-mathematics methods: on the basis of the comparison principle, we have obtained a measure for esti-
mating the distribution and the data set, have formulated data structures describing the uncertainty of the estimate, and
have determined the analytical correction for natural bias. However, as is often the case, we are able to find the
method of constructing isomorphisms between the statistics obtained on the traditional principle of substitution and the
measures obtained on the comparison principle; this enables us to set forth the solution of the problem in question in
a narrow formulation in the ordinary manner without presenting the entire procedure of derivation in detail. We resort
to the proof constructed on the structural principle. The proof turns out to be so simple and evident that unnecessary
mathematical formalization will be excessive.

A methodological problem exists. In mathematical statistics, there is no tool making it possible to substantiate
the proposed statistics but it is available in metrology. This tool is a calibration characteristic (function). On the other
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hand, the normal distribution law is of primary importance in metrology. This proposition can be explained. This re-
sults in a paradox. In metrology, the problem posed by us appears to be not so topical as in statistics, but there is a
tool for its solution. Statistics, conversely, needs solution but has no tool.

A calibration characteristic (function) is obtained in the calibration experiment as the system of equations
��d� ↔ e� but is used in the working experiment as the correction function x = f(d). The method of realization of the
correction function is dependent on many properties of the data and experiment. We use the classification of types of
correction functions which consists of six levels. Substantiation of the obtained result requires the third level of this
classification.

At the first level, the correction function is just an ordinary scalar data function. It is useful if the systematic
error of an instrument is much larger than the random error; if the spread in experimental data is comparable to the
instrumental resolution, it is the only possible one. It is precisely this type of correction function that has received the
widest acceptance and is associated with the calibration function.

At the second level, the correction function is constructed as the interval function of the scalar argument [x]
= f(d). Legal metrology uses precisely this type. For example, the binomial formula of expression of an error or an
uncertainty is nothing but the trapezoidal approximation of a real interval correction function.

At the third level, allowance is made for the real empirical data distribution. This is the maximum level used
by theoretical metrology. The set of standards �e� is used for calibration as a rule. For each of them, the distribution
of experimental data p(d⏐e) is measured. The resulting set of empirical distributions is interpolated to the surface
�p(d⏐e)� → p(d, e), which represents the basis of a correction function. The correction function itself is computed as
the section of this surface by the working experimental value p(x)⏐d = f(p(d, e)⏐(d)). As a result, each datum is com-
pared to its distribution. The aforesaid is illustrated by Figs. 1–3.

In a repetitive experiment, we obtain the set of distributions �p(x)⏐d� by the number of replications. The dis-
tributions may differ not only in shift and dispersion but also in form. We seek to evaluate the measured quantity by
this data structure.

Theoretical statistics can offer the maximum likehood method (MLM): x
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hand, the correction function may be considered as MLM substantiation. Indeed, sometimes the MLM leads to opti-
mum estimates, as far as the efficiency is concerned, e.g., for the normal distribution. In other cases the efficiency is
relatively high if not optimum, e.g., for the Cauchy distribution. Sometimes, the same MLM may lead to inefficient
estimates; in this case the method of moments is used. Therefore, common sense enables us to state that the MLM
uses important information contained in the form of distribution but ignores some other, no less important, information.

Fig. 1. Illustration of the calibration function for three standards and a large
amount of data of the calibration experiment.

Fig. 2. Representation of the correction function in the form of a surface ob-
tained from the calibration of function Fig. 1.
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When the essence is clear, everything becomes simple. The difference in results is caused by the data se-
quence order. The commutativity of the MLM formula is consistent with the independence of data in the data set.
The requirement of data independence is equivalent to the assumption that the use of the distribution is sufficient for
estimation.

However, the distribution itself is not commutative, as far as the measured parameter is concerned: we cannot
interchange buckets. Consequently, we cannot directly compare the distributions and data sets obtained immediately in
the experiment. It is necessary to preorder the data set by using order statistics. Now it turns out to be unallowable to
compare the order datum (numbered datum of the ordered data set) to the entire distribution as a unified structure. We
have to compare each order datum only to its order distribution di ⁄ n ↔ pi ⁄ n(x), whence the estimate’s kernel which can
be interpreted as the uncertainty figure of the estimate of the shift parameter has the form

u (x) = ∏ 
i=1

n

pi ⁄ n (x − di ⁄ n) , (2)

where pi ⁄ n(x) is the density distribution of the ith datum from an ordered data set of length n on the density distribu-
tion p(x).

Indeed, if we record the multiplicity of experiment, we will have to construct its own calibration function for
each number of the order datum. The resulting distribution will be the empirical distribution of the order statistics.
Figures 1–3 remain valid but only for each order datum individually.

A distinctive feature of order distributions is that their dispersion is much lower than the dispersion generating
the distribution. Now each order datum is related to its (order) correction function. The parameter should be estimated
by the set of order distributions obtained from these individual correction functions. The problem is substantially sim-
plified by the fact that the formula for computing the distributions of the order statistics from the distribution of the
generating process is known:

pi ⁄ n (x) = 
n!

(i − 1)!(n − i)!
 (P (x))i−1

 (1 − P (x))n−i
 p (x) .

We illustrate the aforesaid by Fig. 4 which shows the initial distribution p(x), three order statistics p1 ⁄ 3(x),

p2 ⁄ 3(x), and p3 ⁄ 3(x), and their product pΠ(x) = 
p1 ⁄ 3(x), p2 ⁄ 3(x), p3 ⁄ 3(x)

∫ 
Ω

p1 ⁄ 3(x), p2 ⁄ 3(x), p3 ⁄ 3(x)dx

 interpreted as the maximum dense uncer-

tainty (ambiguity) function which can be obtained in the context in question. Experimental uncertainty functions will be
more dispersed. We mention in passing that the average of the centers of gravity of the order densities coincides with
the center of gravity of the initial distribution, i.e., the average of the gravity of distributions is an invariant in a sense.

Fig. 3. Realization of the third-level correction function for an arbitrary datum
(the surface of the correction function is cut and moved apart).
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The problem will be simplified still further if the data set has a small dispersion, as far as a variation in the
correction function is concerned, with the dispersion being so small that both the form and value of the distribution
dispersion cannot substantially change. We will be able to assume that the distribution of the generating process is in-
dependent of the datum value. In this case computation of the uncertainty figure is reduced to the sequence of simple
operations �d� → n → �pi ⁄ n(x)} → u(x): we determine the value of the obtained data set, construct, from it, a set of
order-statistics distributions, and compute the uncertainty function. For convenience of interpretation, the uncertainty
function is normalized to the probability norm. Now the uncertainty figure could be interpreted as evidence for the
probability that the sought parameter has the value of the argument.

The uncertainty function is, in essence, the complete estimate of the parameter measured in a repetitive work-
ing experiment. The completeness is understood as the use and conversion of all available a priori and experimental
information on the value of the measured parameter. The experimental information is, naturally, the data set. The priori
information is primarily contained in the correction function; also, observance of all the assumptions under which this
correction function has been constructed is of importance.

The results of estimation is necessary for making a decision; in actual practice, the complete estimate is often
excessive, and we used only a certain simplified estimate as a rule. Point and interval estimates have gained accep-
tance. We seek to obtain a point estimate x

.
 = s(u(x)) from the uncertainty figure. In the context in question and in

statistical terms, we are dealing with estimation of the shift parameter of distribution of the generating process.
Sometimes, we can use the mode of the uncertainty function to obtain a point estimate. Indeed, the uncer-

tainty function is conveniently normalized to the probability measure; this can be reasonably explained. The value of
the measured parameter is necessarily existent and must be unique (single). There appears a wish to interpret it as the
probability density of the estimated parameter having the corresponding probability. It is natural that the best estimate
is at the maximum of this probability. In particular, this is the recommendation of the MLM, which is justified for it.

However, usually the maximum statistics leads to a bias of the estimate or, in metrological terms, to a sys-
tematic error. Sometimes, the bias can be computed analytically or the systematic error can largely be compensated for
with the correction function. The situation is complicated in the presence of several maxima.

The proposed statistics of estimation of the parameter of a repetitive experiment (1) gives no bias for the

point estimate since the center of gravity of the uncertainty x
.
 = ∫ xu(x)dx is computed. This also eliminates the prob-

lem of ambiguity of the estimate but increases the volume of computations, since the tails of the figure are of impor-
tance. For symmetric figures, the center of gravity coincides with the maximum value.

We cannot give a theoretical substantiation of selecting the statistics of the center of gravity for the point es-
timation by the uncertainty figure on the basis of the axioms of probability theory, but it is not difficult to show the
efficiency of the proposed statistics by a numerical experiment modeling the calibration experiment on obtaining a
point estimate.

Now the structure of the statistics (1) is clear. The distribution densities of the order statistics are under the
product sign. The integral of the numerator computes the center of gravity of the uncertainty figure. The denominator

Fig. 4. Order statistics for an arbitrary distribution.
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normalizes the uncertainty figure. In our opinion, the term "rank measure" will be appropriate for this statistics and for
the method in general.

Formally, constructive derivation requires axioms, rules of derivation, and the chain of arguments itself. The
method is based on the axiom of independence of data in a data set. It can be formulated as the requirement �s [ �b
= s(�d�})�:s(�d�}) � s(�d�}).sort) that all statistics of the class of parametric estimation be independent of the inter-
change of data in a data set, in particular, be efficient for an ordered data set. As a consequence, the diagram
��d

�
�� → p

�
(x)

�pi ⁄ n(x)�

 is commutative: the empirical order distributions obtained from the data directly and computed from the

resulting empirical distribution are equivalent in a statistical sense.
We have used two rules of derivation: the rule of construction of a correction function and the rule of mul-

tiplication of probabilities of independent events. The derivation chain is elementary �d� →
f

 �pi ⁄ n(x − di)} →
Π

u(x):

from the experimental data, we compute the sections of order calibration functions and multiply them together to ob-
tain the uncertainty function of the calibrated parameter. Besides, this is the only possible derivation chain and no al-
ternative can be offered.

Estimation of the Relative Efficiency of the Rank Measure. Since we are dealing with estimation of the
efficiency of determining the parameter for an arbitrary distribution, numerical experiment will be the only appropriate
method to compare the efficiency of statistics. For this purpose, we generate a collection of test data sets and estimate
the parameter by different methods. We compare the collection of estimates using the appropriate algorithm, computing
efficiency, and bias. Although many algorithms for estimating the efficiency can be proposed, the algorithm of linear
regression is the most obvious. The regression coefficient is interpreted as the efficiency, whereas the constant term is
interpreted as the bias. From our observations, the regression criterion is of little importance, since the method is dif-
ferential. The least-squares method is also suitable, since the estimate distribution is normal-like, even if with a rela-

tively large correlation between the distributions. Finally, we follow the scheme �p(x, b) → �d� → (b
.
r, b

.
m)} →

LR
 (ef, sh).

The aforesaid is illustrated by Fig. 5.
The dispersion figure appears typical. The main contribution to the increase in the efficiency is made by the

points poorly identified by the media and satisfactorily by the rank statistics. They are to the right and left of the cen-
ter in Fig. 5. This occurs if two ejections created by heavy tails are found to be on one side of the true value of the
parameter.

A comparison of the arithmetical-mean statistics and the rank measure for normal distribution shows a near-
unity efficiency and an almost total correlation. For a uniform distribution, the rank statistics is only fractions of a per-

Fig. 5. Example of estimation of the relative efficiency (Cauchy distribution
C(x, 0, 1), 10,000 experiments, size of the data set 5): a) the efficiency of the
median with respect to the rank measure is ef = 0.768, the bias is sh =
−0.0006, and the correlation coefficient is 0.782; b) the efficiency of the MLM
with respect to the rank measure is 0.92 and the correlation coefficient is 0.82.
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cent more efficient than the sampling-center statistics and 5% better than the estimate by the mean. It turns out that
the proposed rank statistics has an efficiency no lower than the well-known optimum statistics and even somewhat
higher than the existing efficient empirical statistics.

The confidence interval can be computed and interpreted in different manners according to the observer’s
needs. In the context of validity of the calibration function, the confidence interval is simply a quantum of distribution
which is a section of the correction function when the value of the data’s argument is equal to the value of the point
estimate if, naturally, the corresponding calibration function has been constructed.

We can estimate the confidence interval by the uncertainty figure, but since it is not a correct probability den-
sity, we should carefully select the value of the confidence probability; usually the required value turns out to be very
close to unity, much closer that for the distribution. Here there is a small terminological problem. We have to speak
of the confidence probability as applied to an object which is not the probability density in the strict sense. The prob-
lem can be solved by using the expression "quantum parameter" as the synonym of the term "confidence probability"
for the true distribution.

Legal metrology seeks to estimate the confidence interval directly from experimental data, motivated it by the
fact that, in the course of the working experiment, errors can be both larger and smaller than those observed in the
calibration experiment. In fact, this means the assumption that it is only the form of the error distribution that is re-
produced, whereas the parameters of shift and dispersion (scale) must be estimated. The problem of estimation be-
comes bifactorial. This complication is often excessive, since, having a limited number of data, we have to use
estimation on the worst-case principle or by the highest probability, which is due to the difficulty in differentiating the
action of the case with a known dispersion and the action of change in the noise level. Here the graduation experiment
on estimating the spread in data for the group of working measurements can be of substantial help.

The developed method is applicable in the case of multifactorial estimation but now as a measure estimating
the similarity of the data set and the a priori form of distribution whose parameters are estimated, rather than in the
form of a statistics. This subject requires separate consideration.

Generalization to Multifactorial Estimation. For multifactorial estimation of the distribution parameters, the
initial a priori information is a function ρ(x) interpreted as the reproducible form of an identified distribution (canoni-
cal distribution). The identified distribution is obtained by certain transformation from this function with the estimated
parameters. For example, for the most widespread case of estimation of the parameters of shift b and dispersion a, we

use the linear transformation p(x, b, a) = ρ⎛
⎜
⎝

x
ka

 − b⎞
⎟
⎠
, where k is the coefficient determined by the distribution type and

by the method of standardization of description of the canonical distribution; for the normal distribution and reduction
of the canon to the interval [0 � 1] for a quantum parameter (confidence probability) of 0.95, we have k � 0.33. The
number of the parameters can be increased by a more complex transformation.

Fig. 6. Contour diagram of the uncertainty function from the rank measure for the
data set �2.097, −0.023, −0.252, 1.625, 0.256� with respect to the normal distri-
bution N(x, b, a). The point estimate of the parameters is (b

.
, a

.
) = (0.757, 1.412).
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Now each data set can be compared to the uncertainty function �d�
p(x, b, a)

     
⎫

⎬

⎭

⎪

⎪
→ Π  �pi ⁄ n(di, b, a)� → u(b, a), de-

pendent on two parameters. The point and interval estimates of each parameter can be obtained independently by any
appropriate method. From our data, the most adequate statistics for the proposed rank uncertainty is the center of grav-
ity of the uncertainty figure. The estimate is unambiguous and relatively simple to compute and fully uses the infor-
mation contained in the uncertainty function. Figure 6 illustrates the aforesaid.

Finally, we dwell on the separation of the field of application of our rank measure and the MLM. For the
above reasons, the MLM is inapplicable to analysis of repetitive-experiment data in a strict sense. On the other hand,
when the data set consists of only one datum (n = 1), we obtain p1 ⁄ 1(x)  = p(x), and the methods become nearly
equivalent. The difference is preserved in the method of obtaining a point estimate, more precisely, in interpretation of
the uncertainty figure. In our opinion, the main reason why the operator of computation of the center of gravity can
be used is the preserved value of the calibration function in obtaining the uncertainty figure. In the cases where inter-
pretation of the data densities is relatively arbitrary, interpretation of the uncertainty figure becomes arbitrary, too.
There may occur a situation where estimation by the maximum of the uncertainty density turns out to be preferable,
e.g., in terms of computations, especially as the coordinates of the center of gravity for symmetric distributions with
one maximum coincide with the coordinates of this maximum. In the general case the choice is the observer’s.

Conclusions. The proposed method of estimating the distribution parameters solves the posed problem under
the assumption of observance of the condition of independence of the result from the position of the datum in the data
set. If the form of distribution of the instrumental error is reproduced, the form of all distribution densities of the
order statistics will be reproduced, too. Under these conditions, the individual calibration function for each datum of
the ordered data set will correspond to the order distribution density. Any substantial (in a statistical sense) disagree-
ment will indicate the violation of the assumptions made.

On the efficiency of the proposed statistics, we can make the following remarks. The reason why the statistics
of a repetitive experiment can be used is the absence of the statistics making it possible to evaluate the parameter by
the only one datum more accurately than it is allowed by the knowledge of the distribution of the generating process,
namely, u(x) = p(d − x).

To each position of the datum in the data set, there unambiguously corresponds its order probability density.
Therefore, the proposed method can be interpreted as the statistics making an estimate by the data upon the transfor-
mation �ui(x) = pi ⁄ n(di − x)�n. The transformation is unambiguous and the only possible under the assumptions made,
which follows from the structure of the calibration function for the repetitive experiment. Consequently, the most effi-
cient (optimum from the viewpoint of the balance of available information) statistics for combining the order uncer-
tainties �ui(x)�n is the operator of their product as the operation over independent statistical objects.

Exhaustive data on the terms used can be found in the papers of "Probability and Mathematical Statistics."
Encyclopaedia/Editor-in-Chief Yu. V. Prokhorov, Moscow: Bolshaya Rossiiskaya E′ntsiklopediya, 1999.

NOTATION

a, dispersion (scale) parameter; b, distribution-shift parameter; b
.
, point estimate of the shift parameter; b

.
l,

point estimate by the MLM; b
.
m, point estimate by the median; b

.
r, point estimate by the rank statistics; d, datum: unit

element of experimental information, e.g., record of the measuring instrument’s reading; �d�n, data set: collection of n
data processed as a unified data structure; e, standard value of the measured quantity, used for construction of a cali-
bration function; ef, estimation of the relative efficiency of the statistics; LR, algorithm of linear regression; P(x), cu-
mulative distribution function; p(x), distribution-density function; pi ⁄ n(x), probability density of the ith order statistics
from the data set of length n; s, statistics used for estimating the parametric value; sh, estimate of the relative bias of
the statistics; x

.
, point estimate of the unknown quantity; [x], interval estimate of the unknown quantity; u(x), uncer-

tainty density; Ω, definition domain of the distribution function. Subscripts: l, estimation by the MLM; m, estimation
by the median; r, estimation by the rank measure.
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